Take our Survey

Reference: Gillingham AK, et al. (2004) The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. J Cell Biol 167(2):281-92

Reference Help

Abstract


Rud3p is a coiled-coil protein of the yeast cis-Golgi. We find that Rud3p is localized to the Golgi via a COOH-terminal domain that is distantly related to the GRIP domain that recruits several coiled-coil proteins to the trans-Golgi by binding the small Arf-like GTPase Arl1p. In contrast, Rud3p binds to the GTPase Arf1p via this COOH-terminal "GRIP-related Arf-binding" (GRAB) domain. Deletion of RUD3 is lethal in the absence of the Golgi GTPase Ypt6p, and a screen of other mutants showing a similar genetic interaction revealed that Golgi targeting of Rud3p also requires Erv14p, a cargo receptor that cycles between the endoplasmic reticulum and Golgi. The one human protein with a GRAB domain, GMAP-210 (CEV14/Trip11/Trip230), is known to be on the cis-Golgi, but the COOH-terminal region that contains the GRAB domain has been reported to bind to centrosomes and gamma-tubulin (Rios, R.M, A. Sanchis, A.M. Tassin, C. Fedriani, and M. Bornens. 2004. Cell. 118:323-335). In contrast, we find that this region binds to the Golgi in a GRAB domain-dependent manner, suggesting that GMAP-210 may not link the Golgi to gamma-tubulin and centrosomes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gillingham AK, Tong AH, Boone C, Munro S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference