Take our Survey

Reference: Angermayr M, et al. (2003) Reb1p-dependent DNA bending effects nucleosome positioning and constitutive transcription at the yeast profilin promoter. J Biol Chem 278(20):17918-26

Reference Help

Abstract

The molecular basis of constitutive gene activation is largely unknown. The yeast profilin gene (PFY1), encoding a housekeeping component of the actin cytoskeleton, is constitutively transcribed at a moderate level. The PFY1 promoter dispenses with classical transactivators and a consensus TATA box; however, it contains a canonic site for the abundant multifunctional nuclear factor rDNA enhancer-binding protein (Reb1p) combined with a dA.dT element. Reb1p binds specifically in vitro. Mutation of this site reduces PFY1 expression to about 35%. A nucleosome-free gap of about 190 bp is centered at the genomic Reb1p binding site in vivo and spans the presumptive core promoter and transcriptional initiation sites. Nucleosomes at the border of the gap are positioned. Mutation of the Reb1p motif in the genomic PFY1 promoter abolishes nucleosome positioning, fills the gap with a non-positioned nucleosome, and reduces transcription by a factor of 3. From permutation studies we conclude that Reb1p induces a strong bend into the DNA. Phasing analyses indicate that it is directed toward the major groove. The data suggest that Reb1p plays an architectural role on DNA and that Reb1p-dependent DNA bending leads to a DNA conformation that is incompatible with packaging into nucleosomes and concomitantly facilitates constitutive transcription. In the absence of other transcription activators, Reb1p excludes nucleosomes and moderately stimulates transcription by distorting DNA.

Reference Type
Journal Article
Authors
Angermayr M, Oechsner U, Bandlow W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference