Reference: Hurowitz EH and Brown PO (2003) Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae. Genome Biol 5(1):R2

Reference Help

Abstract

BACKGROUND: Although the protein-coding sequences in the Saccharomyces cerevisiae genome have been studied and annotated extensively, much less is known about the extent and characteristics of the untranslated regions of yeast mRNAs. RESULTS: We developed a 'Virtual Northern' method, using DNA microarrays for genome-wide systematic analysis of mRNA lengths. We used this method to measure mRNAs corresponding to 84% of the annotated open reading frames (ORFs) in the S. cerevisiae genome, with high precision and accuracy (measurement errors +/- 6-7%). We found a close linear relationship between mRNA lengths and the lengths of known or predicted translated sequences; mRNAs were typically around 300 nucleotides longer than the translated sequences. Analysis of genes deviating from that relationship identified ORFs with annotation errors, ORFs that appear not to be bona fide genes, and potentially novel genes. Interestingly, we found that systematic differences in the total length of the untranslated sequences in mRNAs were related to the functions of the encoded proteins. CONCLUSIONS: The Virtual Northern method provides a practical and efficient method for genome-scale analysis of transcript lengths. Approximately 12-15% of the yeast genome is represented in untranslated sequences of mRNAs. A systematic relationship between the lengths of the untranslated regions in yeast mRNAs and the functions of the proteins they encode may point to an important regulatory role for these sequences.

Reference Type
Evaluation Studies | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Hurowitz EH, Brown PO
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference