Take our Survey

Reference: Ishchenko AA, et al. (2004) Alpha-anomeric deoxynucleotides, anoxic products of ionizing radiation, are substrates for the endonuclease IV-type AP endonucleases. Biochemistry 43(48):15210-6

Reference Help

Abstract


Alpha-anomeric 2'-deoxynucleosides (alphadN) are one of the products formed by ionizing radiation (IR) in DNA under anoxic conditions. Alpha-2'-deoxyadenosine (alphadA) and alpha-thymidine (alphaT) are not recognized by DNA glycosylases, and are likely removed by the alternative nucleotide incision repair (NIR) pathway. Indeed, it has been shown that alphadA is a substrate for the Escherichia coli Nfo and human Ape1 proteins. However, the repair pathway for removal of alphadA and other alphadN in yeast is unknown. Here we report that alphadA when present in DNA is recognized by the Saccharomyces cerevisiae Apn1 protein, a homologue of Nfo. Furthermore, alphaT is a substrate for Nfo and Apn1. Kinetic constants indicate that alphadA and alphaT are equally good substrates, as a tetrahydrofuranyl (THF) residue, for Nfo and Apn1. Using E. coli and S. cerevisiae cell-free extracts, we have further substantiated the role of the nfo and apn1 gene products in the repair of alphadN. Surprisingly, we found that bacteria and yeast NIR-deficient mutants are not sensitive to IR, suggesting that DNA strand breaks with terminal 3'-blocking groups rather than alphadN might contribute to cell survival. We propose that the novel substrate specificities of Nfo and Apn1 play an important role in counteracting oxidative DNA base damage.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ishchenko AA, Ide H, Ramotar D, Nevinsky G, Saparbaev M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference