Reference: Miller AL, et al. (2004) Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. J Biol Chem 279(49):51022-32

Reference Help

Abstract


Production of inositol hexakisphosphate (IP6) by Ipk1, the inositol-1,3,4,5,6-pentakisphosphate 2-kinase, is required for Gle1-mediated mRNA export in Saccharomyces cerevisiae cells. To examine the network of interactions that require IP6 production, an analysis of fitness defects was conducted in mutants harboring both an ipk1 null allele and a mutant allele in genes encoding nucleoporins or transport factors. Enhanced lethality was observed with a specific subset of mutants, including nup42, nup116, nup159, dbp5, and gle2, all of which had been previously connected to Gle1 function. Complementation of the nup116Deltaipk1Delta and nup42Deltaipk1Delta double mutants did not require the Phe-Gly repeat domains in the respective nucleoporins, suggesting that IP6 was acting subsequent to heterogeneous nuclear ribonucleoprotein targeting to the nuclear pore complex. With Nup42 and Nup159 localized exclusively to the nuclear pore complex cytoplasmic side, we speculated that IP6 may regulate a cytoplasmic step in mRNA export. To test this prediction, the spatial requirements for the production of IP6 were investigated. Restriction of Ipk1 to the cytoplasm did not block IP6 production. Moreover, coincident sequestering of both Ipk1 and Mss4 (an enzyme required for phosphatidylinositol 4,5-bisphosphate production) to the cytoplasm also did not block IP6 production. Given that the kinase required for inositol 1,3,4,5,6-pentakisphosphate production (Ipk2) is localized in the nucleus, these results indicated that soluble inositides were diffusing between the nucleus and the cytoplasm. Additionally, the cytoplasmic production of IP6 by plasma membrane-anchored Ipk1 rescued a gle1-2 ipk1-4 synthetic lethal mutant. Thus, cytoplasmic IP6 production is sufficient for mediating the Gle1-mRNA export pathway.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Miller AL, Suntharalingam M, Johnson SL, Audhya A, Emr SD, Wente SR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference