Take our Survey

Reference: Nemoto T, et al. (2003) The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification. J Biol Chem 278(41):39517-26

Reference Help

Abstract

Autophagy is a process for the bulk degradation of cytosolic compartments by lysosomes/vacuoles. The formation of autophagosomes involves a dynamic rearrangement of the membrane for which two ubiquitin-like modifications (the conjugation of Apg12p and the modification of a soluble form of MAP-LC3 to a membrane-bound form) are essential. In yeast, Apg10p is an E2-like enzyme essential for Apg12p conjugation. The isolated mouse APG10 gene product interacts with mammalian Apg12p dependent on mammalian Apg7p (E1-like enzyme), and facilitates Apg12p conjugation. The interaction of Apg10p with Apg12p is dependent on the carboxyl-terminal glycine of Apg12p. Mutational analysis of the predicted active site cysteine (Cys161) within mouse Apg10p shows that mutant Apg10pC161S, which can form a stable intermediate with Apg12p, inhibits Apg12p conjugation even in the presence of Apg7p, while overexpression of Apg7p facilitates formation of an Apg12p-Apg5p conjugate. Furthermore, the coexpression of Apg10p with Apg7p facilitates the modification of a soluble form of MAP-LC3 to a membrane-bound form, a second modification essential for autophagy. Mouse Apg10p interacts with MAP-LC3 in HEK293 cells, while no mutant Apg10pC161S forms any intermediate with MAP-LC3. Direct interaction between Apg10p and MAP-LC3 is also demonstrated by yeast two-hybrid analysis. The inability of mutant Apg10pC161S to form any intermediate with MAP-LC3 has ruled out the possibility that MAP-LC3 interacts with Apg10p as a substrate.

Reference Type
Journal Article
Authors
Nemoto T, Tanida I, Tanida-Miyake E, Minematsu-Ikeguchi N, Yokota M, Ohsumi M, Ueno T, Kominami E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference