Reference: Drees BL, et al. (1996) Environment-sensitive labels in multiplex fluorescence analyses of protein-DNA complexes. J Biol Chem 271(50):32168-73

Reference Help

Abstract


Fluorescein is widely used for protein labeling because of its high extinction coefficient and fluorescence emission quantum yield. However, its emission is readily quenched by various pathways. We exploit these properties of fluorescein to examine the self-association of a DNA binding protein and determine the amount of the protein in gel-shifted complexes with specific DNA. A construct (HSFDT385SH) of the heat shock transcription factor (HSF) was expressed that contains the DNA-binding and trimerization domains, residues 192-385 of HSF, with four additional COOH-terminal residues, GMLC, and then labeled at the COOH-terminal cysteine with fluorescein 5-maleimide to form HSFDT385-Fl. The fluorescence increase accompanying the formation of heterotrimers on titration of HSFDT385-Fl with HSFDT385SH) led to an estimate of 3 x 10(-16) M2 for the equilibrium constant for trimerization of HSFDT385SH. HSFDT385-Fl fluorescence also increased 1.7-fold on binding to specific DNA, but not to nonspecific DNA. The protein and DNA content of the several gel-shifted complexes of HSFDT385-Fl (lambdamaxem 532 nm) with specific DNA labeled noncovalently with the energy transfer heterodimer TOTAB (lambdamaxem 658 nm) were accurately determined by a two-color fluorescence emission assay with 488 nm excitation.

Reference Type
Journal Article
Authors
Drees BL, Rye HS, Glazer AN, Nelson HC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference