Take our Survey

Reference: Sharma DK, et al. (2000) Soluble GPI8 restores glycosylphosphatidylinositol anchoring in a trypanosome cell-free system depleted of lumenal endoplasmic reticulum proteins. Biochem J 351 Pt 3:717-22

Reference Help

Abstract

We previously established an in vitro assay for glycosylphosphatidylinositol (GPI) anchoring of proteins using trypanosome membranes. We now show that GPI anchoring is lost when the membranes are washed at high pH and restored to physiological pH prior to assay. We show that soluble component(s) of the endoplasmic reticulum that are lost in the high-pH wash are required for GPI anchoring. We reconstituted the high-pH extract with high-pH-treated membranes and demonstrated restoration of activity. Size fractionation of the high-pH extract indicated that the active component(s) was 30-50 kDa in size and was inactivated by iodoacetamide. Activity could also be restored by reconstituting the inactivated membranes with Escherichia coli-expressed, polyhistidine-tagged Leishmania mexicana GPI8 (GPI8-His; L. mexicana GPI8 is a soluble homologue of yeast and mammalian Gpi8p). No activity was seen when iodoacetamide-treated GPI8-His was used; however, GPI8-His could restore activity to iodoacetamide-treated membranes. Antibodies raised against L. mexicana GPI8 detected a protein of approx. 38 kDa in an immunoblot of the high-pH extract of trypanosome membranes. Our data indicate (1) that trypanosome GPI8 is a soluble lumenal protein, (2) that the interaction between GPI8 and other putative components of the transamidase may be dynamic, and (3) that GPI anchoring can be biochemically reconstituted using an isolated transamidase component.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Sharma DK, Hilley JD, Bangs JD, Coombs GH, Mottram JC, Menon AK
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference