Reference: Wang BD, et al. (2004) Cdc14p/FEAR pathway controls segregation of nucleolus in S. cerevisiae by facilitating condensin targeting to rDNA chromatin in anaphase. Cell Cycle 3(7):960-7

Reference Help

Abstract


The condensin complex is the chief molecular machine of mitotic chromosome condensation. Nucleolar concentration of condensin in mitosis was previously shown to correlate with proficiency of rDNA condensation and segregation. To uncover the mechanisms facilitating this targeting we conducted a screen for mutants that impair mitotic condensin congression to the nucleolus. Mutants in the cdc14, esp1 and cdc5 genes, which encode FEAR-network components, showed the most prominent defects in mitotic condensin localization. We established that Cdc14p activity released by the FEAR pathway was required for proper condensin-to-rDNA targeting in anaphase. The MEN pathway was dispensable for condensin-to-rDNA targeting, however MEN-mediated release of Cdc14p later in anaphase allowed for proper, albeit delayed, condensin targeting to rDNA and successful segregation of nucleolus in the slk19 FEAR mutant. Although condensin was physically dislodged from rDNA in the cdc14 mutant, it was properly assembled, phosphorylated and chromatin-bound, suggesting that condensin was mis-targeted but active. This study identifies a novel pathway promoting condensin targeting to a specific chromosomal address, the rDNA locus.

Reference Type
Journal Article
Authors
Wang BD, Yong-Gonzalez V, Strunnikov AV
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference