Reference: Bjergbaek L, et al. (2002) RecQ helicases and genome stability: lessons from model organisms and human disease. Swiss Med Wkly 132(31-32):433-42

Reference Help

Abstract


Maintaining the integrity of genetic information is fundamental for the life of a cell and the survival of a species. Cells can encounter DNA damage as a consequence of normal cellular metabolism or as a result of exposure to chemical or physical agents. Eukaryotic cells have developed a network of responses in order to deal with DNA damage thereby preserving the integrity of their genetic information. In the presence of extensive genetic insult, a surveillance mechanism or "checkpoint" is activated. The activation of this signal transduction pathway leads to an arrest of cell cycle progression to prevent replication and segregation of damaged DNA molecules and to induce transcription of several repair genes. Existing repair mechanisms are also mobilised, in a coordinated effort to restore the original DNA structure. Genes involved in either cell cycle checkpoints, DNA repair or genes that maintain the fidelity of chromosome segregation are often termed "antimutators" or "caretaker" genes, because they control the stability of the genome and prevent accumulation of mutations in so-called "gatekeeper" genes. This latter group of genes directly regulate the growth of tumours either by inhibiting growth or promoting death. A fundamental requirement for many DNA metabolism processes is the separation of the complementary strands of the DNA duplex. This is promoted by DNA helicases, which unwind nucleic-acid duplexes in an ATP-dependent manner to provide access to the template for proteins of the replication, recombination, repair and transcription machineries. Multiple DNA helicase families have been identified, all containing seven hallmark helicase motifs; members within each helicase family also share sequence homologies beyond and between these motifs. One example is the RecQ helicase family, named after the RecQ protein of Escherichia coli, which was identified during a search for mutants sensitive to thymine starvation. Five members of the RecQ family have been identified in the human genome, and mutations in three of the genes are responsible for genetic diseases that are characterised by genomic instability and a high incidence of cancer. Because mutants in RecQ family genes in other species also have unstable chromosomes, it was proposed that members of the RecQ helicase family play a central role in the maintenance of genomic stability and thereby the prevention of tumorigenesis.

Reference Type
Journal Article
Authors
Bjergbaek L, Cobb JA, Gasser SM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference