Take our Survey

Reference: Amshoff C, et al. (1999) Cycloheximide, a new tool to dissect specific steps in ER-associated degradation of different substrates. Biol Chem 380(6):669-77

Reference Help

Abstract

To study the degradation requirements of unassembled immunoglobulin (Ig) chains, we heterologously expressed a cDNA encoding the secretory form of murine mu in the yeast S. cerevisiae. We found that mu chains were translocated into and retained in the endoplasmic reticulum (ER) as they were N-glycosylated and bound to the yeast homolog of BiP, Kar2p. Similar to mutant yeast carboxypeptidase Y (CPY*), known to undergo cytosolic degradation, mu protein is stabilized in yeast mutants lacking the ubiquitinating enzymes Ubc6p and Ubc7p or in cells overexpressing mutant ubiquitin. Unexpectedly, the translation inhibitor cycloheximide (CHX), but not puromycin, led to the accumulation of polyubiquitinated mu chains that were still glycosylated. By contrast, degradation of CPY* was not impaired by CHX, indicating that the drug affects a substrate-specific degradation step. In contrast to the situation for CPY*, the ER-transmembrane protein Der1p is not essential for mu degradation. Strikingly, however, the CHX-induced accumulation of polyubiquitinated Igmu chains was stronger in deltader1-mutants as compared to wild-type cells, indicating an additive effect of two inhibitory conditions. The results support a previously unknown activity of CHX, i.e. impairing the degradation of transport-incompetent secretory mu chains. Moreover, this activity will allow to dissect substrate-specific steps in ER associated protein degradation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Amshoff C, Jack HM, Haas IG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference