Reference: Martin GA, et al. (1995) A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J 14(9):1970-8

Reference Help

Abstract


We identified three proteins in neutrophil cytosol of molecular size 65, 62 and 68 kDa which interact in a GTP-dependent manner with rac1 and CDC42Hs, but not with rho. Purification of p65 and subsequent peptide sequencing revealed identity to rat brain PAK65 and to yeast STE20 kinase domains. Based on these sequences we screened a human placenta library and cloned the full-length cDNA. The complete amino acid sequence of the human cDNA shares approximately identity with rat brain PAK65; within the kinase domain the human protein shares > 95% and approximately 63% identity with rat PAK65 and yeast STE20 respectively. The new human (h)PAK65 mRNA is ubiquitously expressed and hPAK65 protein is distinct from either human or rat brain PAK65. Recombinant hPAK65 exhibits identical specificity to the endogenous p65; both can bind rac1 and CDC42Hs in a GTP-dependent manner. The GTP-bound forms of rac1 and CDC42Hs induce autophosphorylation of hPAK65 on serine residues only. hPAK65 activated by either rac1 or CDC42Hs is phosphorylated on the same sites. Induction of hPAK65 autophosphorylation by rac1 or CDC42Hs stimulates hPAK65 kinase activity towards myelin basic protein and once hPAK65 is activated, rac1 or CDC42Hs are no longer required to keep it active. The affinities of rac/CDC42Hs for the non-phosphorylated and phosphorylated hPAK65 were similar. hPAK65 had only a marginal effect on the intrinsic GTPase activity of CDC42Hs, but significantly affected the binding and GAP activity of p190. These data are consistent with a model in which hPAK65 functions as an effector molecule for rac1 and CDC42Hs.

Reference Type
Comparative Study | Journal Article
Authors
Martin GA, Bollag G, McCormick F, Abo A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference