Take our Survey

Reference: Wery M, et al. (2004) Members of the SAGA and Mediator complexes are partners of the transcription elongation factor TFIIS. EMBO J 23(21):4232-42

Reference Help

Abstract


TFIIS, an elongation factor encoded by DST1 in Saccharomyces cerevisiae, stimulates transcript cleavage in arrested RNA polymerase II. Two components of the RNA polymerase II machinery, Med13 (Srb9) and Spt8, were isolated as two-hybrid partners of the conserved TFIIS N-terminal domain. They belong to the Cdk8 module of the Mediator and to a subform of the SAGA co-activator, respectively. Co-immunoprecipitation experiments showed that TFIIS can bind the Cdk8 module and SAGA in cell-free extracts. spt8Delta and dst1Delta mutants were sensitive to nucleotide-depleting drugs and epistatic to null mutants of the RNA polymerase II subunit Rpb9, suggesting that their elongation defects are mediated by Rpb9. rpb9Delta, spt8Delta and dst1Delta were lethal in cells lacking the Rpb4 subunit. The TFIIS N-terminal domain is also strictly required for viability in rpb4Delta, although it is not needed for binding to RNA polymerase II or for transcript cleavage. It is proposed that TFIIS and the Spt8-containing form of SAGA co-operate to rescue RNA polymerase II from unproductive elongation complexes, and that the Cdk8 module temporarily blocks transcription during transcript cleavage.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wery M, Shematorova E, Van Driessche B, Vandenhaute J, Thuriaux P, Van Mullem V
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference