Reference: Conde R, et al. (2004) A search for hyperglycosylation signals in yeast glycoproteins. J Biol Chem 279(42):43789-98

Reference Help

Abstract


N-oligosaccharides of Saccharomyces cerevisiae glycoproteins are classified as core and mannan types. The former contain 13-14 mannoses whereas mannan-type structures consist of an inner core extended with an outer chain of up to 200-300 mannoses, a process known as hyperglycosylation. The selection of substrates for hyperglycosylation poses a theoretical and practical question. To identify hyperglycosylation determinants, we have analyzed the influence of the second amino acid (Xaa) of the sequon in this process using the major exoglucanase as a model. Our results indicate that negatively charged amino acids inhibit hyperglycosylation, whereas positively charged counterparts promote it. On the basis of the tridimensional structure of Exg1, we propose that Xaa influences the orientation of the inner core making it accessible to mannan polymerase I in the appropriate position for the addition of alpha-1,6-mannoses. The presence of Glu in the Xaa of the second sequon of the native exoglucanase suggests that negative selection may drive evolution of these sites. However, a comparison of invertases secreted by S. cerevisiae and Pichia anomala suggests that hyperglycosylation signals are also subjected to positive selection.

Reference Type
Journal Article
Authors
Conde R, Cueva R, Pablo G, Polaina J, Larriba G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference