Take our Survey

Reference: Gunji W, et al. (2004) Global analysis of the regulatory network structure of gene expression in Saccharomyces cerevisiae. DNA Res 11(3):163-77

Reference Help

Abstract

Gene expression in eukaryotic cells is controlled by the concerted action of various transcription factors. To help clarify these complex mechanisms, we attempted to develop a method for extracting maximal information regarding the transcriptional control pathways. To this end, we first analyzed the expression profiles of numerous transcription factors in yeast cells, under the assumption that the expression levels of these factors would be elevated under conditions in which the factors were active in the cells. Based on the results, we successfully categorized about 400 transcription factors into three groups based on their expression profiles. We then analyzed the effect of the loss of function of various induced transcription factors on the global expression profile to investigate the above-mentioned assumption of a correlation between transcription elevation and functional activity. By comparing the expression profiles of wild-type with those of disruption mutants using microarrays, we were able to detect a substantial number of relations between transcription factors and the genes they regulate. The results of these experiments suggested that our approach is useful for understanding the global transcriptional networks of eukaryotic cells, in which most genes are regulated in a temporal and conditional manner.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gunji W, Kai T, Takahashi Y, Maki Y, Kurihara W, Utsugi T, Fujimori F, Murakami Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference