Reference: Muñoz I, et al. (2004) Functional characterization of the yeast Ppz1 phosphatase inhibitory subunit Hal3: a mutagenesis study. J Biol Chem 279(41):42619-27

Reference Help

Abstract


Saccharomyces cerevisiae Hal3 is a conserved protein that binds the carboxyl-terminal catalytic domain of the PP1c (protein phosphatase 1)-related phosphatase Ppz1 and potently inhibits its activity, thus modulating all of the characterized functions so far of the phosphatase. It is unknown how Hal3 binds to Ppz1 and inhibits its activity. Although it contains a putative protein phosphatase 1c binding-like sequence (263KLHVLF268), mutagenesis analysis suggests that this motif is not required for Ppz1 binding and inhibition. The mutation of the conserved His378 (possibly involved in dehydrogenase catalytic activity) did not impair Hal3 functions or Ppz1 binding. Random mutagenesis of the 228 residue-conserved central region of Hal3 followed by a loss-of-function screen allowed the identification of nine residues important for Ppz1-related Hal3 functions. Seven of these residues cluster in a relatively small region spanning from amino acid 446 to 480. Several mutations affected Ppz1 binding and inhibition in vitro, whereas changes in Glu460 and Val462 did not alter binding but resulted in Hal3 versions unable to inhibit the phosphatase. Therefore, there are independent Hal3 structural elements required for Ppz1 binding and inhibition. S. cerevisiae encodes a protein (Vhs3) structurally related to Hal3. Recent evidence suggests that both mutations are synthetically lethal. Surprisingly, versions of Hal3 carrying mutations that strongly affected Ppz1 binding or inhibitory capacity were able to complement lethality. In contrast, the mutation of His378 did not. This finding suggests that Hal3 may have both Ppz1-dependent and independent functions involving different structural elements.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Muñoz I, Ruiz A, Marquina M, Barceló A, Albert A, Ariño J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference