Take our Survey

Reference: Biswas D, et al. (2004) Role for Nhp6, Gcn5, and the Swi/Snf complex in stimulating formation of the TATA-binding protein-TFIIA-DNA complex. Mol Cell Biol 24(18):8312-21

Reference Help

Abstract

The TATA-binding protein (TBP), TFIIA, and TFIIB interact with promoter DNA to form a complex required for transcriptional initiation, and many transcriptional regulators function by either stimulating or inhibiting formation of this complex. We have recently identified TBP mutants that are viable in wild-type cells but lethal in the absence of the Nhp6 architectural transcription factor. Here we show that many of these TBP mutants were also lethal in strains with disruptions of either GCN5, encoding the histone acetyltransferase in the SAGA complex, or SWI2, encoding the catalytic subunit of the Swi/Snf chromatin remodeling complex. These synthetic lethalities could be suppressed by overexpression of TOA1 and TOA2, the genes encoding TFIIA. We also used TFIIA mutants that eliminated in vitro interactions with TBP. These viable TFIIA mutants were lethal in strains lacking Gcn5, Swi2, or Nhp6. These lethalities could be suppressed by overexpression of TBP or Nhp6, suggesting that these coactivators stimulate formation of the TBP-TFIIA-DNA complex. In vitro studies have previously shown that TBP binds very poorly to a TATA sequence within a nucleosome but that Swi/Snf stimulates binding of TBP and TFIIA. In vitro binding experiments presented here show that histone acetylation facilitates TBP binding to a nucleosomal binding site and that Nhp6 stimulates formation of a TBP-TFIIA-DNA complex. Consistent with the idea that Nhp6, Gcn5, and Swi/Snf have overlapping functions in vivo, nhp6a nhp6b gcn5 mutants had a severe growth defect, and mutations in both nhp6a nhp6b swi2 and gcn5 swi2 strains were lethal.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Biswas D, Imbalzano AN, Eriksson P, Yu Y, Stillman DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference