Take our Survey

Reference: Xu Z, et al. (2004) Gts1p stabilizes oscillations in energy metabolism by activating the transcription of TPS1 encoding trehalose-6-phosphate synthase 1 in the yeast Saccharomyces cerevisiae. Biochem J 383(Pt 1):171-8

Reference Help

Abstract


We reported previously that Gts1p regulates oscillations of heat resistance in concert with those of energy metabolism in continuous cultures of the yeast Saccharomyces cerevisiae by inducing fluctuations in the levels of trehalose, but not in those of Hsp104 (heat shock protein 104). Further, the expression of TPS1, encoding trehalose-6-phosphate synthase 1, and HSP104 was activated by Gts1p in combination with Snf1 kinase, a transcriptional activator of glucose-repressible genes, in batch cultures under derepressed conditions. Here we show that, in continuous cultures, the mRNA level of TPS1 increased 6-fold in the early respiro-fermentative phase, while that of HSP104 did not change. The expression of SUC2, a representative glucose-repressible gene encoding invertase, also fluctuated, suggesting the involvement of the Snf1 kinase in the periodic activation of these genes. However, this possibility was proven to be unlikely, since the oscillations in both TPS1 and SUC2 mRNA expression were reduced by approx. 3-fold during the transient oscillation in gts1Delta (GTS1-deleted) cells, in which the energy state determined by extracellular glucose and intracellular adenine nucleotide levels was comparable with that in wild-type cells. Furthermore, neither the mRNA level nor the phosphorylation status of Snf1p changed significantly during the oscillation. Thus we suggest that Gts1p plays a major role in the oscillatory expression of TPS1 and SUC2 in continuous cultures of Saccharomyces cerevisiae, and hypothesized that Gts1p stabilizes oscillations in energy metabolism by activating trehalose synthesis to facilitate glycolysis at the shift from the respiratory to the respiro-fermentative phase.

Reference Type
Journal Article
Authors
Xu Z, Yaguchi S, Tsurugi K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference