Reference: Boumann HA, et al. (2004) The yeast phospholipid N-methyltransferases catalyzing the synthesis of phosphatidylcholine preferentially convert di-C16:1 substrates both in vivo and in vitro. J Biol Chem 279(39):40314-9

Reference Help

Abstract


Phosphatidylcholine (PC) is an important and abundant structural component of the membranes of eukaryotic cells. In the yeast Saccharomyces cerevisiae, the primary route for the biosynthesis of PC consists of three consecutive methylation steps of phosphatidylethanolamine (PE) catalyzed by the phospholipid N-methyltransferases Cho2p and Opi3p. To investigate how these biosynthetic enzymes contribute to the composition of the PC species profile, the precursor-product relationships between PE and newly synthesized PC were determined at the level of the molecular species by using electrospray ionization tandem mass spectrometry and stable isotope labeling. In vivo labeling of yeast cells for 10 min with [methyl-D3]methionine revealed the preferential methylation of di-C16:1 PE over a range of PE species compositions. A similar preferential conversion of di-C16:1 PE to PC was found in vitro upon incubating isolated microsomes with S-adenosyl[methyl-D3]methionine. Yeast opi3 and cho2 deletion strains were used to distinguish between the substrate selectivities of Cho2p and Opi3p, respectively. Both biosynthetic enzymes were found to participate in the speciesselective methylation with Cho2p contributing the most. The combined results indicate that the selective methylation of PE species by the methyltransferases plays an important role in shaping the steady-state profile of PC molecular species in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Boumann HA, Chin PT, Heck AJ, De Kruijff B, De Kroon AI
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference