Take our Survey

Reference: Seo BB, et al. (2004) Functional expression of the single subunit NADH dehydrogenase in mitochondria in vivo: a potential therapy for complex I deficiencies. Hum Gene Ther 15(9):887-95

Reference Help

Abstract


It has been reported that defects of mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) are involved in many human diseases (such as encephalomyopathies and sporadic Parkinson's disease). However, no effective remedies have been established for complex I deficiencies. We have adopted a gene therapy approach utilizing the NDI1 gene that codes for the single subunit NADH dehydrogenase of Saccharomyces cerevisiae (Ndi1). Our earlier experiments show that the Ndi1 protein can replace or supplement the functionality of complex I in various cultured cells. For this approach to be useful, it is important to demonstrate in vivo that the mature protein is correctly placed in mitochondria. In this study, we have attempted in vivo expression of the NDI1 gene in skeletal muscles and brains (substantia nigra and striatum) of rodents. In all tissues tested, the Ndi1 protein was identified in the injected area by immunohistochemical staining at 1-2 weeks after the injection. Sustained expression was observed for at least 7 months. Double-staining of the sections using antibodies against Ndi1 and F(1)-ATPase revealed that the expressed Ndi1 protein was predominantly localized to mitochondria. In addition, the tissue cells expressing the Ndi1 protein stimulated the NADH dehydrogenase activity, suggesting that the expressed Ndi1 is functionally active. It was also confirmed that the Ndi1 expression induced no inflammatory response in the tissues examined. The data indicate that the NDI1 gene will be a promising therapeutic tool in the treatment of encephalomyopathies and neurodegenerative diseases caused by complex I impairments.

Reference Type
Journal Article
Authors
Seo BB, Nakamaru-Ogiso E, Cruz P, Flotte TR, Yagi T, Matsuno-Yagi A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference