Take our Survey

Reference: Gourlay CW, et al. (2004) A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 164(6):803-9

Reference Help

Abstract

Several determinants of aging, including metabolic capacity and genetic stability, are recognized in both yeast and humans. However, many aspects of the pathways leading to cell death remain to be elucidated. Here we report a role for the actin cytoskeleton both in cell death and in promoting longevity. We have analyzed yeast strains expressing mutants with either increased or decreased actin dynamics. We show that decreased actin dynamics causes depolarization of the mitochondrial membrane and an increase in reactive oxygen species (ROS) production, resulting in cell death. Important, however, is the demonstration that increasing actin dynamics, either by a specific actin allele or by deletion of a gene encoding the actin-bundling protein Scp1p, can increase lifespan by over 65%. Increased longevity appears to be due to these cells producing lower than wild-type levels of ROS. Homology between Scp1p and mammalian SM22/transgelin, which itself has been isolated in senescence screens, suggests a conserved mechanism linking aging to actin stability.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference