Take our Survey

Reference: Izawa S and Inoue Y (2004) A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murill. Appl Microbiol Biotechnol 64(4):537-42

Reference Help

Abstract


Previously, we found that cytosolic thioredoxin is a negative regulator for an oxidative stress responsive transcription factor, Yap1p (yeast AP-1-like transcription factor), i.e., this transcription factor is constitutively concentrated in the nucleus in the thioredoxin-deficient mutant ( trx1delta trx2delta) due to an impairment of the reactive oxygen species-scavenging activity of this mutant [Izawa et al. (1999) J Biol Chem 274:28459-28465]. Based on these findings, we developed a screening method to discover substances that show antioxidant activity. With this method, antioxidant activity was evaluated by monitoring the subcellular localization of Yap1p. Since Yap1p is oxidized and accumulates in the nucleus in trx1delta trx2Delta cells, it is easy to identify antioxidant activity by observing the localization of green fluorescent protein (GFP)-tagged Yap1p. If exogenous substances taken in by trx1delta trx2Delta cells were able to function as antioxidants to reduce the oxidized form of Yap1p, GFP1-Yap1p would diffuse into the cytoplasm. We used this system to screen for antioxidant activity in mushrooms, and found that the edible mushroom Agaricus blazei Murill is an excellent source of antioxidants.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Izawa S, Inoue Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference