Take our Survey

Reference: Monti P, et al. (2004) Nucleotide excision repair defect influences lethality and mutagenicity induced by Me-lex, a sequence-selective N3-adenine methylating agent in the absence of base excision repair. Biochemistry 43(19):5592-9

Reference Help

Abstract


Using a yeast shuttle vector system, we have previously reported on the toxicity and mutagenicity of Me-lex, [1-methyl-4-[1-methyl-4-[3-(methoxysulfonyl)propanamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propane, a compound that selectively generates 3-methyladenine (3-MeA). We observed that a mutant strain defective in Mag1, the glycosylase that excises 3-MeA in the initial step of base excision repair (BER) to generate an abasic site, is significantly more sensitive to the toxicity of Me-lex with respect to wild type but shows only a marginal increase in mutagenicity. A strain defective in AP endonuclease activity (Deltaapn1apn2), also required for functional BER, is equally sensitive to the toxicity as the Deltamag1 mutant but showed a significantly higher mutation frequency. In the present work, we have explored the role of nucleotide excision repair (NER) in Me-lex-induced toxicity and mutagenicity since it is known that NER acts on abasic sites in vivo in yeast and in vitro assays. To accomplish this, we have deleted one of the genes essential for NER in yeast, namely, RAD14, both in the context of an otherwise DNA repair-proficient strain (Deltarad14) and in a BER-defective isogenic derivative lacking the MAG1 gene (Deltamag1rad14). Interestingly, no sensitivity to the treatment with Me-lex was conferred by the simple deletion of RAD14. However, a significant enhancement in toxicity and mutagenicity was observed when cells lacked both Rad14 and Mag1. The mutation spectrum induced by Me-lex in the Deltamag1rad14 strain is indistinguishable from that observed in the Deltaapn1/Deltaapn2 or in the Deltamag1 strains. The results indicate that in yeast NER can play a protective role against 3-MeA-mediated toxicity and mutagenicity; however, the role of NER is appreciable only in a BER-defective background.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Monti P, Iannone R, Campomenosi P, Ciribilli Y, Varadarajan S, Shah D, Menichini P, Gold B, Fronza G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference