Take our Survey

Reference: You L, et al. (2004) Model for the yeast cofactor A-beta-tubulin complex based on computational docking and mutagensis. J Mol Biol 341(5):1343-54

Reference Help

Abstract

Virtually every biological process involves protein-protein contact but relatively few protein-protein complexes have been solved by X-ray crystallography. As more individual protein structures become available, computational methods are likely to play increasingly important roles in defining these interactions. Tubulin folding and dimer formation are complex processes requiring a variety of protein cofactors. One of these is cofactor A, which interacts with beta-tubulin prior to assembly of the alpha-tubulin-beta-tubulin heterodimer. In the yeast Saccharomyces cerevisiae, beta-tubulin is encoded by TUB2 and cofactor A by RBL2. We have used computational docking and site-directed mutagenesis to generate a model of the Rbl2-Tub2 complex from the solved structures of these two proteins. Residues in the N termini and the loops of the Rbl2 homodimer appear to mediate binding to beta-tubulin. These interact with beta-tubulin residues in the region that contains helices H9 and H10. Rbl2 and alpha-tubulin share overlapping binding sites on the beta-tubulin molecule providing a structural explanation for the mutually exclusive binding of Rbl2 and alpha-tubulin to beta-tubulin.

Reference Type
Journal Article
Authors
You L, Gillilan R, Huffaker TC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference