Reference: Natarajan P, et al. (2004) Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc Natl Acad Sci U S A 101(29):10614-9

Reference Help

Abstract


Aminophospholipid translocases (APLTs) are defined primarily by their ability to flip fluorescent or spin-labeled derivatives of phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the external leaflet of a membrane bilayer to the cytosolic leaflet and are thought to establish phospholipid asymmetry in biological membranes. The identities of APLTs remain unknown, although candidate proteins include the Drs2p/ATPase II subfamily of P-type ATPases. Drs2p from budding yeast localizes to the trans-Golgi network (TGN), and here we show that this membrane contains an ATP-dependent APLT that flips 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD) PS and PE derivatives from the luminal to the cytosolic leaflet. To assess the contribution of Drs2p to this activity, TGN membranes were prepared from strains harboring WT or temperature-sensitive alleles of DRS2 and null alleles of three other potential APLT genes (DNF1, DNF2, and DNF3). Assay of these membranes indicated that Drs2p was required for the ATP-dependent translocation of NBD-PS, whereas no active translocation of NBD-PE or NBD-phosphatidylcholine was detected. The specificity of Drs2p for NBD-PS suggested that translocation of PS would be required for the function of Drs2p in protein transport from the TGN. However, cho1 yeast strains that are unable to synthesize PS do not phenocopy drs2 but instead transport proteins normally via the secretory pathway. In addition, a drs2 cho1 double mutant retains drs2 transport defects. Therefore, whereas NBD-PS is a preferred substrate for Drs2p in vitro, endogenous PS is not an obligatory substrate in vivo for the role Drs2p plays in protein transport.

Reference Type
Authors
Natarajan P, Wang J, Hua Z, Graham TR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference