Reference: Shintani T and Klionsky DJ (2004) Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 279(29):29889-94

Reference Help

Abstract

Selective incorporation of cargo proteins into the forming vesicle is an important aspect of protein targeting via vesicular trafficking. Based on the current paradigm of cargo selection in vesicular transport, proteins to be sorted to other organelles are condensed at the vesicle budding site in the donor organelle, a process that is mediated by the interaction between cargo and coat proteins, which constitute part of the vesicle forming machinery. The cytoplasm to vacuole targeting (Cvt) pathway is an unconventional vesicular trafficking pathway in yeast, which is topologically and mechanistically related to autophagy. Aminopeptidase I (Ape1) is the major cargo protein of the Cvt pathway. Unlike the situation in conventional vesicular transport, precursor Ape1, along with its receptor Atg19/Cvt19, is packed into a huge complex, termed a Cvt complex, independent of the vesicle formation machinery. The Cvt complex is subsequently incorporated into the forming Cvt vesicle. The deletion of APE1 or ATG19 compromised the organization of the pre-autophagosomal structure (PAS), a site that is thought to play a critical role in Cvt vesicle/autophagosome formation. The proper organization of the PAS also required Atg11/Cvt9, a protein that localizes the cargo complex at the PAS. Accordingly, the deletion of APE1, ATG19, or ATG11 affected the formation of Cvt vesicles. These observations suggest a unique concept; in the case of the Cvt pathway, the cargo proteins facilitate receptor recruitment and vesicle formation rather than the situation with most vesicular transport, in which the forming vesicle concentrates the cargo proteins.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Shintani T, Klionsky DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference