Reference: Fragiadakis GS, et al. (2004) Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation. EMBO J 23(2):333-42

Reference Help

Abstract

We found Nhp6a/b yeast HMG-box chromatin-associated architectural factors and Ssn6 (Cyc8) corepressor to be crucial transcriptional coactivators of FRE2 gene. FRE2 encoding a plasma membrane ferric reductase is induced by the iron-responsive, DNA-binding, transcriptional activator Aft1. We have shown that Nhp6 interacts directly with the Aft1 N-half, including the DNA-binding region, to facilitate Aft1 binding at FRE2 UAS. Ssn6 also interacts directly with the Aft1 N-half and is recruited on FRE2 promoter only in the presence of both Aft1 and Nhp6. This Nhp6/Ssn6 role in Aft1-mediated transcription is FRE2 promoter context specific, and both regulators are required for activation-dependent chromatin remodeling. Our results provide the first in vivo biochemical evidence for nonsequence-specific HMG-box protein-facilitated recruitment of a yeast gene-specific transactivator to its DNA target site and for Nhp6-mediated Ssn6 promoter recruitment. Ssn6 has an explicitly coactivating role on FRE2 promoter only upon induction. Therefore, transcriptional activation in response to iron availability involves multiple protein interactions between the Aft1 iron-responsive DNA-binding factor and global regulators such as Nhp6 and Ssn6.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Fragiadakis GS, Tzamarias D, Alexandraki D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference