Take our Survey

Reference: Sugawara K, et al. (2004) The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9(7):611-8

Reference Help

Abstract


Microtubule-associated protein light chain 3 (LC3), a mammalian homologue of yeast Atg8, plays an essential role in autophagy, which is involved in the bulk degradation of cytoplasmic components by the lysosomal system. Here, we report the crystal structure of LC3 at 2.05 A resolution with an R-factor of 21.8% and a free R-factor of 24.9%. The structure of LC3, which is similar to those of Golgi-associated ATPase enhancer of 16 kDa (GATE-16) and GABA(A) receptor-associated protein (GABARAP), contains a ubiquitin core with two alpha helices, alpha1 and alpha2, attached at its N-terminus. Some common and distinct features are observed among these proteins, including the conservation of residues required to form an interaction among alpha1, alpha2 and the ubiquitin core. However, the electrostatic potential surfaces of these helices differ, implicating particular roles to select specific binding partners. Hydrophobic patches on the ubiquitin core of LC3, GABARAP and GATE-16 are well conserved and are similar to the E1 binding surface of ubiquitin and NEDD8. Therefore, we propose that the hydrophobic patch is a binding surface for mammalian Atg7 similar to a ubiquitin-like conjugation system. We also propose the functional implications of the ubiquitin fold as a recognition module of target proteins.

Reference Type
Journal Article
Authors
Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference