Reference: Golinelli-Cohen MP, et al. (2004) Complementation of yeast Arc1p by the p43 component of the human multisynthetase complex does not require its association with yeast MetRS and GluRS. J Mol Biol 340(1):15-27

Reference Help

Abstract


Yeast Arc1p, human p43 and plant methionyl-tRNA synthetase (MetRS) possess an EMAPII-like domain capable of non-specific interactions with tRNA. Arc1p interacts with MetRS (MES1) and GluRS and operates as a tRNA-interacting factor (tIF) in trans of these two synthetases. In plant MetRS, the EMAPII-like domain is fused to the catalytic core of the synthetase and acts as a cis-acting tIF for aminoacylation. We observed that the catalytic core of plant MetRS expressed from a centromeric plasmid cannot complement a yeast arc1(-) mes1(-) strain. Overexpression of the mutant enzyme from a high-copy number plasmid restored cell growth, suggesting that deletion of its C-terminal tIF domain was responsible for the poor aminoacylation efficiency of that enzyme in vivo. Accordingly, expression of full-size plant MetRS from a centromeric plasmid, but also of fusion proteins between its catalytic core and the EMAPII-like domains of yeast Arc1p or of human p43 restored cell viability. These data showed that homologous tIF domains from different origins are interchangeable and may act indifferently in trans or in cis of the catalytic domain of a synthetase. Unexpectedly, co-expression of Arc1p with the catalytic core of plant MetRS restored cell viability as well, even though Arc1p did not associate with plant MetRS. Because Arc1p also interacts with yeast GluRS, restoration of cell growth could be due at least in part to its role of cofactor for that enzyme. However, co-expression of human p43, a tIF that did not associate with plant MetRS or with yeast GluRS and MetRS, also restored cell viability of a yeast strain that expressed the catalytic core of plant MetRS. These results show that p43 and Arc1p are able to facilitate tRNA aminoacylation in vivo even if they do not interact physically with the synthetases. We propose that p43/Arc1p may be involved in sequestering tRNAs in the cytoplasm of eukaryotic cells, thereby increasing their availability for protein synthesis.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Golinelli-Cohen MP, Zakrzewska A, Mirande M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference