Take our Survey

Reference: Chakshusmathi G, et al. (2004) Design of temperature-sensitive mutants solely from amino acid sequence. Proc Natl Acad Sci U S A 101(21):7925-30

Reference Help

Abstract


Temperature-sensitive (Ts) mutants are a powerful tool with which to study gene function in vivo. Ts mutants are typically generated by random mutagenesis followed by laborious screening procedures. By using the Escherichia coli cytotoxin CcdB as a model system, simple procedures for generating Ts mutants at high frequency through site-directed mutagenesis were developed. Putative buried, hydrophobic residues are selected through analysis of the protein sequence. Residue burial is confirmed by ensuring that substitution of the residue by Asp leads to protein inactivation. At such sites, a Ts phenotype can typically be generated either by (i) substitution of two predicted, buried residues with the 18 remaining amino acids or (ii) introduction of Lys, Ser, Ala, and Trp at three to four predicted buried sites. By using these design strategies, 17 tight Ts mutants of CcdB were isolated at four predicted buried sites. The rules were further verified by making several Ts mutants of yeast Gal4 at residues 68, 69, and 70. No Ts mutants of either protein have been previously reported. Such Ts mutants of Gal4 can be used for conditional expression of a variety of genes by using the well characterized upstream-activating-sequence-Gal4 system.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chakshusmathi G, Mondal K, Lakshmi GS, Singh G, Roy A, Ch RB, Madhusudhanan S, Varadarajan R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference