Reference: Rosado IV and de la Cruz J (2004) Npa1p is an essential trans-acting factor required for an early step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. RNA 10(7):1073-83

Reference Help

Abstract

Ribosome biogenesis requires >100 nonribosomal proteins, which are associated with different preribosomal particles. The substrates, the interacting partners, and the timing of action of most of these proteins are largely unknown. To elucidate the functional environment of the putative ATP-dependent RNA helicase Dbp6p from Saccharomyces cerevisiae, which is required for 60S ribosomal subunit assembly, we have previously performed a synthetic lethal screen and thereby revealed a genetic interaction network between Dbp6p, Rpl3p, Nop8p, and the novel Rsa3p. In this report, we extended the characterization of this functional network by performing a synthetic lethal screen with the rsa3 null allele. This screen identified the so far uncharacterized Npa1p (YKL014C). Polysome profile analysis indicates that there is a deficit of 60S ribosomal subunits and an accumulation of halfmer polysomes in the slowly growing npa1-1 mutant. Northern blotting and primer extension analysis shows that the npa1-1 mutation negatively affects processing of all 27S pre-rRNAs and the normal accumulation of both mature 25S and 5.8S rRNAs. In addition, 27SA(2) pre-rRNA is prematurely cleaved at site C(2). Moreover, GFP-tagged Npa1p localizes predominantly to the nucleolus and sediments with large complexes in sucrose gradients, which most likely correspond to pre-60S ribosomal particles. We conclude that Npa1p is required for ribosome biogenesis and operates in the same functional environment of Rsa3p and Dbp6p during early maturation of 60S ribosomal subunits.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Rosado IV, de la Cruz J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference