Reference: Gupta V, et al. (2004) Sml1p is a dimer in solution: characterization of denaturation and renaturation of recombinant Sml1p. Biochemistry 43(26):8568-78

Reference Help

Abstract


Sml1p is a small 104-amino acid protein from Saccharomyces cerevisiae that binds to the large subunit (Rnr1p) of the ribonucleotide reductase complex (RNR) and inhibits its activity. During DNA damage, S phase, or both, RNR activity must be tightly regulated, since failure to control the cellular level of dNTP pools may lead to genetic abnormalities, such as genome rearrangements, or even cell death. Structural characterization of Sml1p is an important step in understanding the regulation of RNR. Until now the oligomeric state of Sml1p was unknown. Mass spectrometric analysis of wild-type Sml1p revealed an intermolecular disulfide bond involving the cysteine residue at position 14 of the primary sequence. To determine whether disulfide bonding is essential for Sml1p oligomerization, we mutated the Cys14 to serine. Sedimentation equilibrium measurements in the analytical ultracentrifuge show that both wild-type and C14S Sml1p exist as dimers in solution, indicating that the dimerization is not a result of a disulfide bond. Further studies of several truncated Sml1p mutants revealed that the N-terminal 8-20 residues are responsible for dimerization. Unfolding/refolding studies of wild-type and C14S Sml1p reveal that both proteins refold reversibly and have almost identical unfolding/refolding profiles. It appears that Sml1p is a two-domain protein where the N-terminus is responsible for dimerization and the C-terminus for binding and inhibiting Rnr1p activity.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Gupta V, Peterson CB, Dice LT, Uchiki T, Racca J, Guo JT, Xu Y, Hettich R, Zhao X, Rothstein R, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference