Take our Survey

Reference: Mulet JM, et al. (2004) The trehalose pathway and intracellular glucose phosphates as modulators of potassium transport and general cation homeostasis in yeast. Yeast 21(7):569-82

Reference Help

Abstract


Trk, encoded by the partially redundant genes TRK1 and TRK2, is the major potassium transporter of Saccharomyces cerevisiae. This system is specific for potassium and rubidium but, by reducing the electrical membrane potential of the plasma membrane, Trk decreases the uptake of toxic cations such as lithium, calcium, aminoglycosides and polyamines, which are transported by other systems. Gain- and loss-of-function studies indicate that TPS1, a gene encoding trehalose-6-phosphate synthase and known to modulate glucose metabolism, activates Trk and reduces the sensitivity of yeast cells to many toxic cations. This effect is independent of known regulators of Trk, such as the Hal4 and Hal5 protein kinases and the protein phosphatase calcineurin. Mutants defective in isoform 2 of phosphoglucomutase (pgm2) and mutants defective in isoform 2 of hexokinase (hxk2) exhibit similar phenotypes of reduced Trk activity and increased sensitivity to toxic cations compared with tps1 mutants. In all cases Trk activity was positively correlated with levels of glucose phosphates (glc-1-P and glc-6-P). These results indicate that Tps1, like Pgm2 and Hxk2, increases the levels of glucose phosphates and suggest that these metabolites, directly or indirectly, activate Trk.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Mulet JM, Alejandro S, Romero C, Serrano R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference