Take our Survey

Reference: Ferreiro JA, et al. (2004) Cbf1p modulates chromatin structure, transcription and repair at the Saccharomyces cerevisiae MET16 locus. Nucleic Acids Res 32(5):1617-26

Reference Help

Abstract


The presence of damage in the transcribed strand (TS) of active genes and its position in relation to nucleosomes influence nucleotide excision repair (NER) efficiency. We examined chromatin structure, transcription and repair at the MET16 gene of wild-type and cbf1Delta Saccharomyces cerevisiae cells under repressing or derepressing conditions. Cbf1p is a sequence-specific DNA binding protein required for MET16 chromatin remodelling. Irrespective of the level of transcription, repair at the MspI restriction fragment of MET16 exhibits periodicity in line with nucleosome positions in both strands of the regulatory region and the non-transcribed strand of the coding region. However, repair in the coding region of the TS is always faster, but exhibits periodicity only when MET16 is repressed. In general, absence of Cbf1p decreased repair in the sequences examined, although the effects were more dramatic in the Cbf1p remodelled area, with repair being reduced to the lowest levels within the nucleosome cores of this region. Our results indicate that repair at the promoter and coding regions of this lowly transcribed gene are dependent on both chromatin structure and the level of transcription. The data are discussed in light of current models relating NER and chromatin structure.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ferreiro JA, Powell NG, Karabetsou N, Kent NA, Mellor J, Waters R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference