Take our Survey

Reference: Perera NM, et al. (2004) Hypo-osmotic stress activates Plc1p-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol Hexakisphosphate accumulation in yeast. J Biol Chem 279(7):5216-26

Reference Help

Abstract


Polyphosphoinositide-specific phospholipases (PICs) of the delta-subfamily are ubiquitous in eukaryotes, but an inability to control these enzymes physiologically has been a major obstacle to understanding their cellular function(s). Plc1p is similar to metazoan delta-PICs and is the only PIC in Saccharomyces cerevisiae. Genetic studies have implicated Plc1p in several cell functions, both nuclear and cytoplasmic. Here we show that a brief hypo-osmotic episode provokes rapid Plc1p-catalyzed hydrolysis of PtdIns(4,5)P2 in intact yeast by a mechanism independent of extracellular Ca2+. Much of this PtdIns(4,5)P2 hydrolysis occurs at the plasma membrane. The hydrolyzed PtdIns(4,5)P2 is mainly derived from PtdIns4P made by the PtdIns 4-kinase Stt4p. PtdIns(4,5)P2 hydrolysis occurs normally in mutants lacking Arg82p or Ipk1p, but they accumulate no InsP6, showing that these enzymes normally convert the liberated Ins(1,4,5)P3 rapidly and quantitatively to InsP6. We conclude that hypo-osmotic stress activates Plc1p-catalyzed PtdIns(4,5)P2 at the yeast plasma membrane and the liberated Ins(1,4,5)P3 is speedily converted to InsP6. This ability routinely to activate Plc1p-catalyzed PtdIns(4,5)P2 hydrolysis in vivo opens up new opportunities for molecular and genetic scrutiny of the regulation and functions of phosphoinositidases C of the delta-subfamily.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Perera NM, Michell RH, Dove SK
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference