Take our Survey

Reference: Sumner ER, et al. (2003) Cell cycle- and age-dependent activation of Sod1p drives the formation of stress resistant cell subpopulations within clonal yeast cultures. Mol Microbiol 50(3):857-70

Reference Help

Abstract


Phenotypic heterogeneity describes non-genetic variation that exists between individual cells within isogenic populations. The basis for such heterogeneity is not well understood, but it is evident in a wide range of cellular functions and phenotypes and may be fundamental to the fitness of microorganisms. Here we use a suite of novel assays applied to yeast, to provide an explanation for the classic example of heterogeneous resistance to stress (copper). Cell cycle stage and replicative cell age, but not mitochondrial content, were found to be principal parameters underpinning differential Cu resistance: cell cycle-synchronized cells had relatively uniform Cu resistances, and replicative cell-age profiles differed markedly in sorted Cu-resistant and Cu-sensitive subpopulations. From a range of potential Cu-sensitive mutants, cup1Delta cells lacking Cu-metallothionein, and particularly sod1Delta cells lacking Cu, Zn-superoxide dismutase, exhibited diminished heterogeneity. Furthermore, age-dependent Cu resistance was largely abolished in cup1Delta and sod1Delta cells, whereas cell cycle-dependent Cu resistance was suppressed in sod1Delta cells. Sod1p activity oscillated approximately fivefold during the cell cycle, with peak activity coinciding with peak Cu-resistance. Thus, phenotypic heterogeneity in copper resistance is not stochastic but is driven by the progression of individual cells through the cell cycle and ageing, and is primarily dependent on only Sod1p, out of several gene products that can influence the averaged phenotype. We propose that such heterogeneity provides an important insurance mechanism for organisms; creating subpopulations that are pre-equipped for varied activities as needs may arise (e.g. when faced with stress), but without the permanent metabolic costs of constitutive expression.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Sumner ER, Avery AM, Houghton JE, Robins RA, Avery SV
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference