Take our Survey

Reference: Cipollo JF and Trimble RB (2002) Hypoglycosylation in the alg12delta yeast mutant destabilizes protease A and causes proteolytic loss of external invertase. Glycobiology 12(11):30G-3G

Reference Help

Abstract


The Saccharomyces cerevisiae alg12delta mutant accumulates oligosaccharide lipid with a Man(7)GlcNAc(2) oligosaccharide. To determine the N-glycan structures present on S. cerevisiae glycoproteins in the alg12delta strain, we made attempts to purify external invertase, a highly glycosylated secreted protein. These efforts revealed that, in the alg12delta background, external invertase was mildly hypoglycosylated and rapidly destroyed proteolytically. Although secreted alg9delta invertase was more severely hypoglycosylated than the alg12delta form, it was paradoxically stable during purification. The loss of periplasmic invertase was prevented by addition of pepstatin A to the cell cultures, suggesting that aspartyl proteases were active. We found that during overexpression of invertase in alg12delta yeast, sufficient protease A was mistargeted to the periplasmic space, where it hydrolyzed the invertase. Even though alg9delta invertase is underglycosylated in comparison to the alg12delta form, it is more stable because in this genetic background much less protease A is secreted compared to alg12delta cells. These observations may be relevant to studies using other extracellular proteins (e.g., mating factors, alpha-glucosidase) as probes when characterizing glycosylation defects in yeast.FAU - Cipollo, John .

Reference Type
Letter
Authors
Cipollo JF, Trimble RB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference