Take our Survey

Reference: Anderson JS, et al. (2000) Cooperative ordering in homeodomain-DNA recognition: solution structure and dynamics of the MATa1 homeodomain. Biochemistry 39(33):10045-54

Reference Help

Abstract

The mating type homeodomain proteins, MATa1 and MATalpha2, combine to form a heterodimer to bind DNA in diploid yeast cells. The a1-alpha2 heterodimer tightly and specifically binds haploid-specific gene operators to repress transcription. On its own, however, the a1 homeodomain does not bind DNA in a sequence-specific manner. To help understand this interaction, we describe the solution structure and backbone dynamics of the free a1 homeodomain. Free a1 in solution is an ensemble of structures having flexible hinges at the two turns in the small protein fold. Conformational changes in the a1 homeodomain upon ternary complex formation are located in the loop between helix 1 and helix 2, where the C-terminal tail of alpha2 binds to form the heterodimer, and at the C-terminus of helix 3, the DNA recognition helix. The observed differences, comparing the free and bound a1 structures, suggest a mechanism linking van der Waals stacking changes to the ordering of a final turn in the DNA-binding helix of a1. The tail of alpha2 induces changes in loop 1 of a1 that push it toward a properly folded DNA binding conformation.

Reference Type
Journal Article
Authors
Anderson JS, Forman MD, Modleski S, Dahlquist FW, Baxter SM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference