Reference: Howlett NG and Schiestl RH (2004) Nucleotide excision repair deficiency causes elevated levels of chromosome gain in Saccharomyces cerevisiae. DNA Repair (Amst) 3(2):127-34

Reference Help

Abstract


Aneuploidy is the most frequent aberration observed in tumor cells, and underlies many debilitating and cancer-prone congenital disorders. Aneuploidy most often arises as a consequence of chromosomal non-disjunction, however, little is known about the genetic and epigenetic factors that affect the chromosomal segregation process. As many cancer-prone syndromes are associated with defects in DNA repair pathways we decided to investigate the relationship between DNA repair in mutation avoidance pathways, namely base and nucleotide excision, and mismatch repair (MMR), and aneuploidy in the yeast Saccharomyces cerevisiae. Isogenic haploid and diploid DNA repair deficient yeast strains were constructed, and spontaneous levels of intra- and inter-chromosomal recombination, forward mutation, chromosome gain, and loss were measured. We show that the nucleotide excision repair (NER) pathway is required for accurate chromosomal disjunction. In the absence of Rad1, Rad2, or Rad4, spontaneous levels of chromosome XV gain were significantly elevated in both haploid and diploid mutant strains. Thus, chromosome gain may be an additional cancer predisposing event in NER deficient patients.

Reference Type
Journal Article
Authors
Howlett NG, Schiestl RH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference