Reference: Hess D, et al. (2004) Spt10-dependent transcriptional activation in Saccharomyces cerevisiae requires both the Spt10 acetyltransferase domain and Spt21. Mol Cell Biol 24(1):135-43

Reference Help

Abstract

Histone levels are a key factor in several nuclear processes, including transcription and chromosome segregation. Previous studies have demonstrated that Spt10 and Spt21 are required for the normal transcription of a subset of the histone genes in Saccharomyces cerevisiae, and sequence analysis has suggested that Spt10 is an acetyltransferase. We have now characterized several aspects of transcriptional activation of histone genes by Spt10 in vivo. Our results show that activation by Spt10 is dependent on its acetyltransferase domain. At HTA2-HTB2, the histone locus whose transcription is most strongly dependent on Spt10, Spt10 is physically recruited to the promoter in an Spt21-dependent and a cell cycle-dependent manner. Furthermore, Spt10 and Spt21 directly interact. These results, taken together with the identification of spt10 mutations that suppress an spt21Delta mutation, suggest a model for transcriptional activation by Spt10 and Spt21.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Hess D, Liu B, Roan NR, Sternglanz R, Winston F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference