Reference: Espelin CW, et al. (2003) Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. Mol Biol Cell 14(11):4557-68

Reference Help

Abstract

Chromosome segregation at mitosis depends critically on the accurate assembly of kinetochores and their stable attachment to microtubules. Analysis of Saccharomyces cerevisiae kinetochores has shown that they are complex structures containing >/=50 protein components. Many of these yeast proteins have orthologs in animal cells, suggesting that key aspects of kinetochore structure have been conserved through evolution, despite the remarkable differences between the 125-base pair centromeres of budding yeast and the Mb centromeres of animal cells. We describe here an analysis of S. cerevisiae Ndc10p, one of the four protein components of the CBF3 complex. CBF3 binds to the CDEIII element of centromeric DNA and initiates kinetochore assembly. Whereas CDEIII binding by Ndc10p requires the other components of CBF3, Ndc10p can bind on its own to CDEII, a region of centromeric DNA with no known binding partners. Ndc10p-CDEII binding involves a dispersed set of sequence-selective and -nonselective contacts over approximately 80 base pairs of DNA, suggesting formation of a multimeric structure. CDEII-like sites, active in Ndc10p binding, are also present along chromosome arms. We propose that a polymeric Ndc10p complex formed on CDEII and CDEIII DNA is the foundation for recruiting microtubule attachment proteins to kinetochores. A similar type of polymeric structure on chromosome arms may mediate other chromosome-spindle interactions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Espelin CW, Simons KT, Harrison SC, Sorger PK
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference