Reference: Barbour L, et al. (2000) Improving synthetic lethal screens by regulating the yeast centromere sequence. Genome 43(5):910-7

Reference Help

Abstract

The synthetic lethal screen is a useful method in identifying novel genes functioning in an alternative pathway to the gene of interest. The current synthetic lethal screen protocol in yeast is based on a colony-sectoring assay that allows direct visualization of mutant colonies among a large population by their inability to afford plasmid loss. This method demands an appropriate level of stability of the plasmid carrying the gene of interest. YRp-based plasmids are extremely unstable and complete plasmid loss occurs within a few generations. Consequently, YCp plasmids are the vector of choice for synthetic lethal screens. However, we found that the high-level stability of YCp plasmids resulted in a large number of false positives that must be further characterized. In this study, we attempt to improve the existing synthetic lethal screen protocol by regulating the plasmid stability and copy number. It was found that by placing a yeast centromere sequence under the control of either inducible or constitutive promoters, plasmid stability can be significantly decreased. Hence, altering the conditions under which yeast cells carrying the plasmid PGAL1-CEN4 were cultivated allowed us to develop a method that eliminated virtually 100% of false positives and drastically reduced the time required to carry out a synthetic lethal screen.

Reference Type
Journal Article
Authors
Barbour L, Zhu Y, Xiao W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference