Take our Survey

Reference: Juin P, et al. (1997) Relationship between the peptide-sensitive channel and the mitochondrial outer membrane protein translocation machinery. J Biol Chem 272(9):6044-50

Reference Help

Abstract

The peptide-sensitive channel (PSC), a cationic channel of the mitochondrial outer membrane, is blocked by synthetic mitochondrial presequences and by nonmitochondrial basic peptides such as dynorphin B(1-13). Both types of peptides are imported into mitochondria. However, the import of dynorphin B(1-13) had to be further characterized since its properties differed from those of the general import pathway used by mitochondrial peptides. Cross-linking experiments with iodinated dynorphin B(1-13) led to the labeling of TOM 40/ISP 42, a component of the protein import machinery of the outer membrane. Accordingly, dynorphin B(1-13) could also be used as a presequence to direct the import of a cytosolic protein into the mitochondria. Pretreatment of intact mitochondria by trypsin removed components capable of discriminating between true mitochondrial presequences and other basic peptides active on the PSC. After proteolysis, both types of peptides appeared to cross the outer membrane through the same pathway. Involvement of the PSC in the translocation complex was shown by immunoprecipitation of the PSC activity by anti-ISP 42 antibodies. Taken together, the present data reinforce the hypothesis that the PSC is the pore responsible for the translocation of protein through the outer membrane.

Reference Type
Journal Article
Authors
Juin P, Thieffry M, Henry JP, Vallette FM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference