Reference: van Heeckeren WJ, et al. (1992) Role of the conserved leucines in the leucine zipper dimerization motif of yeast GCN4. Nucleic Acids Res 20(14):3721-4

Reference Help

Abstract

Yeast GCN4 belongs to the class of eukaryotic transcription factors whose bZIP DNA-binding domains dimerize via a leucine zipper motif that structurally resembles a coiled coil. The leucine zipper contains 4-5 highly conserved leucine residues spaced exactly 7 residues apart that are located within the alpha-helical hydrophobic interface between protein monomers. Here, we investigate the role of the four canonical leucines in the GCN4 leucine zipper by analyzing a series of mutated derivatives for their ability to activate transcription in vivo and to bind DNA in vitro. The GCN4 leucine zipper is surprisingly tolerant of mutations, with a wide variety of single substitutions at any of the four leucines including basic and acidic amino acids behaving indistinguishably from wild-type GCN4. Moreover, some derivatives containing two leucine substitutions display detectable though reduced function. These results indicate that other residues within the coiled coil are crucial for efficient dimerization, and they suggest that some eukaryotic transcriptional regulatory proteins lacking the conserved leucine repeat will dimerize through a structurally homologous motif. Interestingly, our results differ in several respects from those obtained by analyzing mutations in the GCN4 leucine zipper in the context of a lambda repressor-GCN4 zipper hybrid protein. These apparent differences may reflect a functional interrelationship between the leucine zipper and basic region subdomains for DNA-binding by bZIP proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
van Heeckeren WJ, Sellers JW, Struhl K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference