Take our Survey

Reference: Kapranov P, et al. (1999) A protein phosphatase 2C gene, LjNPP2C1, from Lotus japonicus induced during root nodule development. Proc Natl Acad Sci U S A 96(4):1738-43

Reference Help

Abstract

Symbiotic interactions between legumes and compatible strains of rhizobia result in root nodule formation. This new plant organ provides the unique physiological environment required for symbiotic nitrogen fixation by the bacterial endosymbiont and assimilation of this nitrogen by the plant partner. We have isolated two related genes (LjNPP2C1 and LjPP2C2) from the model legume Lotus japonicus that encode protein phosphatase type 2C (PP2C). Expression of the LjNPP2C1 gene was found to be enhanced specifically in L. japonicus nodules, whereas the LjPP2C2 gene was expressed at a similar level in nodules and roots. A glutathione S-transferase-LjNPP2C1 fusion protein was shown to have Mg2+- or Mn2+-dependent and okadaic acid-insensitive PP2C activity in vitro. A chimeric construct containing the full-length LjNPP2C1 cDNA, under the control of the Saccharomyces cerevisiae alcohol dehydrogenase promoter, was found to be able to complement a yeast PP2C-deficient mutant (pct1Delta). The transcript level of the LjNPP2C1 gene was found to increase significantly in mature nodules, and its highest expression level occurred after leghemoglobin (lb) gene induction, a molecular marker for late developmental events in nodule organogenesis. Expression of the LjNPP2C1 gene was found to be drastically altered in specific L. japonicus lines carrying monogenic-recessive mutations in symbiosis-related loci, suggesting that the product of the LjNPP2C1 gene may function at both early and late stages of nodule development.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Kapranov P, Jensen TJ, Poulsen C, de Bruijn FJ, Szczyglowski K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference