Reference: García-Rubio M, et al. (2003) Recombinogenic effects of DNA-damaging agents are synergistically increased by transcription in Saccharomyces cerevisiae. New insights into transcription-associated recombination. Genetics 165(2):457-66

Reference Help

Abstract


Homologous recombination of a particular DNA sequence is strongly stimulated by transcription, a phenomenon observed from bacteria to mammals, which we refer to as transcription-associated recombination (TAR). TAR might be an accidental feature of DNA chemistry with important consequences for genetic stability. However, it is also essential for developmentally regulated processes such as class switching of immunoglobulin genes. Consequently, it is likely that TAR embraces more than one mechanism. In this study we tested the possibility that transcription induces recombination by making DNA more susceptible to recombinogenic DNA damage. Using different plasmid-chromosome and direct-repeat recombination constructs in which transcription is driven from either the P(GAL1)- or the P(tet)-regulated promoters, we have shown that either 4-nitroquinoline-N-oxide (4-NQO) or methyl methanesulfonate (MMS) produces a synergistic increase of recombination when combined with transcription. 4-NQO and MMS stimulated recombination of a transcriptionally active DNA sequence up to 12,800- and 130-fold above the spontaneous levels observed in the absence of transcription, whereas 4-NQO and MMS alone increased recombination 193- and 4.5-fold, respectively. Our results provide evidence that TAR is due, at least in part, to the ability of transcription to enhance the accessibility of DNA to exogenous chemicals and internal metabolites responsible for recombinogenic lesions. We discuss possible parallelisms between the mechanisms of induction of recombination and mutation by transcription.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
García-Rubio M, Huertas P, González-Barrera S, Aguilera A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference