Take our Survey

Reference: Cohen TJ, et al. (2003) Ask10p mediates the oxidative stress-induced destruction of the Saccharomyces cerevisiae C-type cyclin Ume3p/Srb11p. Eukaryot Cell 2(5):962-70

Reference Help

Abstract


Srb11p-Srb10p is the budding yeast C-type cyclin-cyclin-dependent kinase that is required for the repression of several stress response genes. To relieve this repression, Srb11p is destroyed in cells exposed to stressors, including heat shock and oxidative stress. In the present study, we identified Ask10p (for activator of Skn7) by two-hybrid analysis as an interactor with Srb11p. Coimmunoprecipitation studies confirmed this association, and we found that, similar to Srb11p-Srb10p, Ask10p is a component of the RNA polymerase II holoenzyme. Ask10p is required for Srb11p destruction in response to oxidative stress but not heat shock. Moreover, this destruction is important since the hypersensitivity of an ask10 mutant strain to oxidative stress is rescued by deleting SRB11. We further show that Ask10p is phosphorylated in response to oxidative stress but not heat shock. This modification requires the redundant mitogen-activated protein (MAP) kinase kinase Mkk1/2 but not their normal MAP kinase target Slt2p. Moreover, the other vegetative MAP kinases--Hog1p, Fus3p, or Kss1p--are not required for Ask10p phosphorylation, suggesting the existence of an alternative pathway for transducing the Pkc1p-->Bck1-->Mkk1/2 oxidative stress signal. In conclusion, Ask10p is a new component of the RNA polymerase II holoenzyme and an important regulator of the oxidative stress response. In addition, these results define a new role for the Pkc1p MAP kinase cascade (except the MAP kinase itself) in transducing the oxidative damage signal directly to the RNA polymerase II holoenzyme, thereby bypassing the stress-activated transcription factors.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Cohen TJ, Lee K, Rutkowski LH, Strich R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference