Reference: Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity--targets--functions. Curr Top Med Chem 3(12):1315-47

Reference Help

Abstract


Information recovered from genome sequencing projects, multiple sequence alignments, structural analyses of PPIase and published records were used in deciphering the biological diversity, functions and targets of four groups of proteins encoded by dissimilar sets of sequences whose spatial representations exhibit peptidylprolyl cis/trans isomerase activity (PPIase). In the human genome there are encoded fifteen proteins whose segments have significant homology with the sequence of 12 kDa protein which is the target of the potent immunosuppressive macrolides FK506 or rapamycin. The 12 kDa archetype of the FK506-binding protein (FKBP), known as FKBP-12a, is an abundant intracellular protein whereas other FKBPs possessing from one to four FK506-like binding domains (FKBDs) have nominal masses varying from 13 to 135 kDa. The human genome contains at least sixteen genes encoding proteins comprising one cyclosporin-A (CsA) binding domain (CLD) called cyclophilins whose nominal masses vary from 17 to 324 kDa and multiple coding segments for small cyclophilins (17-19 kDa) whose transcription levels and functions remain unknown. The third group of PPIases encoded in the genome comprises two proteins (hPin1 and hParv14) where hPin1 is an important PPIase for cell cycle. The A. thaliana, C. elegans, D. melanogaster and S. cerevisiae genomes encode a less diverse spectrum of PPIases whereas the prokaryotic genomes contain from none to three cyclophilins, from none to four genes encoding FKBPs, one distant homologue of the Pin1 protein named parvulin and the fourth group of PPIases known as trigger factors. PPIases are discretely distributed to different cellular compartments and interact with a number of targets that control a range of cellular processes. Analyses of the sequence alignments of the two groups of PPIases, namely cyclophilins and FKBPs from diverse phyla, show that in each group their sequences diverge but the amino acid residues which form the PPIase activity site and macrolide binding cavity remain well conserved in the majority of them which suggests that the spatial structures and functions of each group of PPIases remain conserved.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Galat A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference