Reference: Tate JJ and Cooper TG (2003) Tor1/2 regulation of retrograde gene expression in Saccharomyces cerevisiae derives indirectly as a consequence of alterations in ammonia metabolism. J Biol Chem 278(38):36924-33

Reference Help

Abstract


Retrograde genes of Saccharomyces cerevisiae encode the enzymes needed to synthesize alpha-ketoglutarate, required for ammonia assimilation, when mitochondria are damaged or non-functional because of glucose fermentation. Therefore, it is not surprising that a close association exists between control of the retrograde regulon and expression of nitrogen catabolic genes. Expression of these latter genes is nitrogen catabolite repression (NCR)-sensitive, i.e. expression is low with good nitrogen sources (e.g. glutamine) and high when only poor (e.g. proline) or limiting nitrogen sources are available. It has been reported recently that both NCR-sensitive and retrograde gene expression is negatively regulated by glutamine and induced by treating cells with the Tor1/2 inhibitor, rapamycin. These conclusions predict that NCR-sensitive and retrograde gene expression should respond in parallel to nitrogen sources, ranging from those that highly repress NCR-sensitive transcription to those that elicit minimal NCR. Because this prediction did not accommodate earlier observations that CIT2 (a retrograde gene) expression is higher in glutamine than proline containing medium, we investigated retrograde regulation further. We show that (i) retrograde gene expression correlates with intracellular ammonia and alpha-ketoglutarate generated by a nitrogen source rather than the severity of NCR it elicits, and (ii) in addition to its known regulation by NCR, NAD-glutamate dehydrogenase (GDH2) gene expression is down-regulated by ammonia under conditions where NCR is minimal. Therefore, intracellular ammonia plays a pivotal dual role, regulating the interface of nitrogen and carbon metabolism at the level of ammonia assimilation and production. Our results also indicate the effects of rapamycin treatment on CIT2 transcription, and hence Tor1/2 regulation of retrograde gene expression occur indirectly as a consequence of alterations in ammonia and glutamate metabolism.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Tate JJ, Cooper TG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference