Take our Survey

Reference: Lima-Filho GL, et al. (2002) Assessment of the stannous fluoride and phytic acid effect in the yeast Saccharomyces cerevislae. Cell Mol Biol (Noisy-le-grand) 48(7):777-81

Reference Help

Abstract

Stannous fluoride (SnF2) is a powerful reducing agent in 99mTc-labelled radiopharmaceuticals for nuclear medicine procedures. SnF2 may enhance reactive oxidative species (ROS) in prokaryotic cells. Phytic acid (PA) is a wide-ranging regulator of many important cellular functions such as intracellular regulations of surface receptions channels and it is known to have antioxidant and chelating properties. In order to analyze whether membrane transporters of the facilitator or the ABC type (SNQ1 and SNQ2) have an influence on Sn2+ toxicity in yeast we used the respective mutants and compared their responses to the wild type (WT). Since ABC transporters are YAP1p transcription activator inducible, we included a yap1 mutant in our Sn2+ toxicity assay. Finally, we tested the PA influence on Sn2+ toxicity in these strains. Yeast cells in stationary growth phase were exposed to different concentrations of SnF2 (ranging from 2 to 6 mg/ml) and PA (0.1 M) for one hour. The snq1 mutant exhibited the highest sensitivity to SnF2 while the snq2 and snq3/yap1 mutants had an equally intermediate sensitivity. The presence of PA was not able to produce a significant protection against the cytotoxicity of SnF2. This is probably due to its reduced chelating power in complex liquid media Our results with yeast support the genotoxic effects described for SnF2 in bacteria andindicate that the biological effect of this reducing agent could be related to the generation of reactive oxygen species.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lima-Filho GL, Pungartnik C, Catanho MT, Bernardo-Filho M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference